
A Practical Characterization of a NASA SpaceCube
Application through Fault Emulation and Laser Testing

John Paul Walters, Kenneth M. Zick, and Matthew French
Information Sciences Institute, University of Southern California

Arlington, VA 22203
Email: {jwalters, kzick, mfrench}@isi.edu

Abstract—Historically, space-based processing systems have
lagged behind their terrestrial counterparts by several processor
generations due, in part, to the cost and complexity of im-
plementing radiation-hardened processor designs. Efforts such
as NASA’s SpaceCube seek to change this paradigm, using
higher performance commercial hardware wherever possible.
This has the potential to revolutionize onboard data processing,
but it cannot happen unless the soft error reliability can be
characterized and deemed sufficient.

A variety of fault injection techniques are used to evaluate
system reliability, most commonly fault emulation, fault simula-
tion, laser testing, and particle beam testing. Combining multiple
techniques is more complex and less common. In this study we
characterize a real-world application that leverages a radiation-
hardening by software (RHBSW) solution for the SpaceCube
platform, using two fault injection strategies: laser testing and
fault emulation. We describe several valuable lessons learned, and
show how both validation techniques can be combined to greater
effect.

I. INTRODUCTION

The space community sits at an inflection point. As Earth-
orbiting satellite imaging systems continue to generate massive
volumes of data, either the satellite to Earth downlink capacity
must increase to accommodate this data, or onboard processing
must be used to reduce the data volume. Early experiments
from NASA’s EO-1 mission demonstrated the viability of
onboard processing, and future missions expect to use it more
extensively [1].

Typically, space-based computing leverages radiation-
hardened processing elements (e.g. FPGAs, processors, memo-
ries). Processors such as the Mongoose V [2], the Rad6000 [3],
and the Rad750 [4] provide this radiation -hardening at the
cost of processing performance. To realize the full benefit
of onboard processing, however, future missions will require
much greater computational power than is available in today’s
radiation-hardened processors.

NASA has provided an alternative processing platform
through the SpaceCube [1]. Instead of performing all data
processing in radiation-hardened components, the SpaceCube
can provide commercial systems-on-a-chip paired with a low
performance radiation-hardened microcontroller. This allows
scientific missions to utilize far greater processing power, pro-
vided that the SpaceCube-based processing reliability can be
characterized and well understood, and provided that software
approaches to fault tolerance can be proven effective.

Through our previous work we have developed an
application-agnostic fault tolerance suite for embedded plat-

forms like the NASA SpaceCube [5], allowing such platforms
to mitigate control errors (detecting and correcting data errors
is an active area of our research).

The focus of this paper is to characterize, through fault
injection, the reliability of a real application with our radiation-
hardening by software (RHBSW) solution targeting the Space-
Cube platform. There are four common fault injection methods
to characterizing a processor or system’s reliability: fault emu-
lation, fault simulation, laser testing, and particle beam testing.
Particle beam testing is known to be the “gold standard” of
radiation characterization for devices. In our case, however,
particle beam testing was not suitable because it would have
exposed portions of the chip that were not protected by our
radiation-hardening by software scheme.

Fault simulation is commonly used by logic designers to
characterize their own hardware designs, whether for space
or terrestrial applications. This is convenient because such
designers have access to RTL and netlists that enable accu-
rate simulation. We do not have access to such proprietary
information for the embedded CPU cores on the SpaceCube.
Thus fault simulation was infeasible.

Instead, we base our characterization on a combination
of laser testing and fault emulation. Laser testing allows for
precise control of the injection target to the micron level,
allowing injection of a single pulse at a specified x − y
coordinate. Fault emulation (injecting faults into an actual
machine such as a prototype) provides an inexpensive solution
to long running fault injection campaigns, enabling users to
collect thousands of injections continuously over a period of
days or weeks. We show how we can leverage both techniques
to greater effect than either laser testing or fault emulation can
provide alone.

As such, we make two contributions in this paper: 1) we
offer lessons learned while characterizing the reliability of
an embedded application using both laser testing and fault
emulation, 2) we describe the synergistic effects achieved by
combining laser testing and fault emulation.

II. BACKGROUND

A. NASA SpaceCube and Onboard Data Processing

The NASA SpaceCube is a family of platforms created at
the NASA Goddard Space Flight Center for high-performance
onboard data processing [1]. By leveraging leading-edge
commercial devices, FPGA-based acceleration, and radiation-
hardening by software, this paradigm aims for breakthrough
performance for key applications. A SpaceCube 1.0 platform

978-1-4799-0181-4/13/$31.00 ©2013 IEEE

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

user
高亮

Fig. 1: SpaceCube (circled) on the International Space Station
MISSE-7 experiment.

using four Xilinx Virtex-4FX60 FPGAs was installed on the
International Space Station in 2009, as shown in Fig. 1.
Another system flew on the Hubble Space Telescope Servicing
Mission 4 in 2009. Next generation versions are being devel-
oped for a range of missions including CubeSats.

B. Error Detection and Recovery Methods

Our fault tolerance platform is composed of two primary
error detection mechanisms: application-level control flow
assertions, and heartbeat monitors. We assume the presence
of a radiation-hardened controller like the one present on
the SpaceCube 1.0 platform. The radiation-hardened controller
performs no data processing; however, it is responsible for
monitoring the heartbeats sent from each of the embedded
PowerPC processors.

The primary recovery mechanisms are through our embed-
ded checkpoint/rollback library. Recovery is performed either
via self-recovery, where an individual PowerPC application
recovers itself, or via the rad-hard microcontroller.

C. Fault Emulation

A fault emulator can be used to emulate upsets within the
software-writable regions of a prototype system or processor.
Unlike laser or particle beam-induced faults, emulated faults
can be precisely specified through the emulator’s logical view
of the hardware with precise reporting of specific upsets and
their logical location. This level of detail can prove incred-
ibly valuable when characterizing an application or system,
allowing developers to tune their fault tolerance strategies to
the unique characteristics of a specific application. Another
benefit of fault emulation is its low cost, enabling inexpensive
long-running fault injection campaigns over days, weeks, or
longer.

However, fault emulation has its limitations. The fault
mechanism does not always closely mimic the fault mechanism
of real world radiation-induced faults. Multi-bit upsets cannot
typically be modeled accurately. Moreover, because this type
of fault emulation can only characterize systems based on their
software-writable regions, any non-software-visible regions are

ignored. As we later show, this can lead to overestimating the
impact of specific architectural features (e.g. the register set).

D. Laser Testing

A laser can be used to inject transient faults into an
integrated circuit [6], enabling an evaluation of a system’s fault
tolerance methods. Unlike particle beam-induced faults, laser-
induced faults can be finely controlled in space and time; single
laser pulses can be injected into a system in order to test single
event effects, and a laser can be readily focused on a circuit
of interest with a spot size on the order of a micron. A laser
pulse ionizes a circuit region, potentially causing states to flip
in one or more sequential elements or combinational circuit
nodes. The physical fault mechanisms are not identical to those
involving particle collisions, so laser testing does not directly
characterize the raw fault rates that can be expected in a
particle radiation environment. However, the precise generation
of transient faults allows for characterization of fault-to-error
probabilities, and the scheduling of laser facilities is often
easier and more flexible than scheduling of particle beam
facilities.

Laser testing has advantages over fault emulation as well.
Faults can be injected across all sequential elements as opposed
to only those that are software-writable. Faults in combina-
tional logic (single event transients aka SETs) can be injected.
Importantly, it is also possible to generate realistic multi-bit
upsets; this is usually not feasible with fault emulation when
a system contains proprietary IP cores for which the logical-
physical mapping is unknown.

III. APPLICATION, SYSTEM, AND FAULT MODELS

A. System and Application Models

For testing, we modeled the SpaceCube using commer-
cial Xilinx Virtex-4FX60 FPGAs identical to those on the
SpaceCube 1.0 platform. Laser testing and fault emulation
campaigns were conducted on separate test boards due to
the requirements of the laser test. More details on the laser
testing apparatus are described in Section IV. In both the laser
and fault emulation campaigns, two PowerPC processors are
used: one for application execution, and the other to model the
radiation-hardened microcontroller.

Our application model synthesizes the major components
of common satellite imagery applications: FFT, complex
multiplication, and thresholding. We created an application
representative of synthetic aperture radar (SAR) as well as
hyperspectral image classification. The application repeatedly
performs 1-dimensional FFTs and complex-complex multipli-
cation followed by thresholding (see Fig. 2). The number
of loop iterations was fixed at 330 in order to limit the
application’s runtime to approximately 5 seconds.

At system startup a golden output is calculated that is used
to verify results after both the fault emulation and laser testing
trials. We define a trial as a single execution of our application,
during which a single fault is injected. In the case of our laser
test, a single pulse is emitted causing a single laser strike,
while in the case of our fault emulator, a single state bit is
flipped at random.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
高亮

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Initialize

FFT

Complex Multiply

Threshold

Compare

33
0

Ite
ra

tio
ns

Application Processor

Tester

Shared Block RAM
(heartbeat data, control flow data)

Heartbeat Interrupt

Emulated Rad-hard
Controller

Fig. 2: Application model and its interaction with the emulated
rad-hard controller.

At the end of each trial, the application PowerPC is reset,
and the execution behavior is classified as one of the following
error types:

• Benign: The application terminates normally within
some threshold of the execution time. The results are
correct.

• Unrecoverable crash/hang: The application crashes or
hangs and cannot be reset either by the application
PowerPC or the emulated rad-hard microcontroller. In
this case, the test FPGA must be reprogrammed.

• Recoverable crash/hang: The application crashes or
hangs, but is able to recover either through a rollback
or a reset. If the rad-hard microcontroller intervenes,
we consider this a recoverable crash/hang.

• Silent data corruption (SDC): The application termi-
nates normally, but the results are incorrect. This is
not a specific focus of this work, however we track
these cases for future investigation.

B. Fault Models

In our fault emulator, faults are modeled as an SEU (single
event upset). Faults can be injected into the instruction and
data caches, including both tags and cache line data as well as
the register sets. Cache upsets are especially critical because
Virtex-4 caches have non-functional cache parity circuits [7],
a design fault of the embedded processor core. The fault
is injected through an interrupt in a non-cacheable memory
region, meaning the application is effectively paused while a
memory element is selected at random and the state flipped.

For laser testing, faults are modeled as an SEU or SET at
a random location within a region containing the embedded
processor core. Only a single laser pulse is injected during
one execution of the application of interest, with timing that
is uniformly random across the execution time. Unlike in
fault emulation, laser-induced SEUs may be multi-bit. Specific
details about the laser testing methodology are provided in the
following sections.

IV. EXPERIMENTAL METHODOLOGY

A. Fault Emulation

Fault emulation is performed using a custom designed
PowerPC fault emulator. The experiment runs on a single
Virtex-4FX60 FPGA. Testing is performed using a Xilinx
ML410 development board. As described in Section III we
use a single PowerPC core within the FPGA as the application
processor, and a second core as an emulated rad-hard micro-
controller. Faults are injected using a non-cacheable interrupt
with non-cacheable variables to avoid polluting the application
cache contents. Register upsets are implemented through a
combination of inline assembly code and stack manipulation
to inject upsets into the nonvolatile registers of the processor.

To inject upsets into the cache contents, a custom FPGA
circuit is used. First, the target cache element and cache line
are identified. In the case of the instruction cache, the line
is invalidated and retouched. In doing so, the custom FPGA
circuit modifies the bus transaction to insert the bit flip before
the data enters the processor. A similar process is used in the
case of the data cache; however, additional work is necessary
to account for dirty cache lines. We provide a more detailed
description of the fault emulator in our prior work [8].

The fault emulator is capable of injecting faults into any
software-writable memory location. Fault locations are chosen
by randomly selecting a bit among all software-writable bits.
In Table I we provide an estimation of all of the bits within
the PowerPC 405. We classify them by those accessible by our
fault injector and those that are not.

TABLE I: PowerPC 405 sensitive bits

Feature Size Size
Accessible Inaccessible

Instruction Cache 16KB + 1472B tag/ctrl 512 ctrl bits
Data Cache 16KB + 1344B tag/ctrl 512 ctrl bits
Registers 75 x 32 bits 0
Execution Pipeline 0 10 x 32 bits
ALU/MAC 0 ˜1200 bits
Timers 0 3 x 64 bits
MMU 0 72 x 68 bits
Misc 0 1024 bits
Total 287,072 bits 8,656 bits

From Table I we can see that most of the PowerPC 405’s
known sensitive bits are accessible to our fault emulator.
Moreover, the vast majority of them exist within the PowerPC’s
instruction and data caches, making fault emulation within the
caches especially critical. Still, our fault emulator is unable

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

to access any of the ALU/MAC bits, execution pipeline bits,
etc. This, broadly, is perhaps the primary disadvantage of fault
emulation: critical parts of the PowerPC are not visible to the
fault emulator.

The primary advantages of fault emulation, however, are
the detailed feedback that is available after each emulated
SEU, and the volume of trials that may be captured. Both the
emulated radiation-hardened microcontroller and application
send output via their own UART. After each trial, we know
when the fault was injected, what memory region that fault
was injected into, and the specific bit that was flipped. We
ran three fault emulation campaigns and collected over ten
thousand injections in total. We describe the campaigns and
results in detail in Section V.

B. Laser Testing

An FPGA-based hardware/software tester was created
largely from scratch to control the experiments. The tester
includes a re-purposed high-speed digital tester board (orig-
inally created by NASA and ISI for particle beam testing [9]),
a Xilinx Virtex-II Pro FPGA design, a test program that runs
on a PowerPC core embedded in the Virtex-II Pro, and a high-
density connector for interfacing to the system under test. The
application under test runs on a PowerPC 405 core embedded
in a Virtex-4FX60 FPGA daughtercard positioned in the path
of the laser.

Two commercial Xilinx Virtex-4FX60 devices were pre-
pared for laser testing by a third party (FA Instruments, Inc.).
The devices were de-lidded and the backsides of the die were
polished to mirror surface quality.

The laser testing was performed at the U.S. Naval Research
Laboratory using a titanium sapphire pulsed laser (Clark-MXR
CPA1000) in a dual-photon setup. The laser generated 150 fs
pulses at a rate of 1 kHz with a spot size of 1.35 µm. The
NRL laser had been calibrated in the week prior to testing
to an intensity level of 73.6 pJ/mV, when using a neutral
density filter (OD1) that reduces the intensity by 8.64× at
the wavelength of interest.

Laser pulses were injected through the backside of the
device, as depicted in Fig. 3. A view of the laser testing setup
is provided in Fig. 4, with a close-up of the lens and device
in Fig. 5.

One of the challenges with application-level testing is to
inject only a single fault per application execution (e.g. once
per 5 seconds). A laser pulse was generated every ms, so a
means of selecting individual pulses was needed. NRL did
not previously have this capability, so a solution had to be
engineered. The same problem has been addressed at other
facilities [10]. In our solution, the tester drives a trigger signal
to a shutter controller which in turn opens and closes the
shutter in the laser path. The shutter (Uniblitz LS2) only
remains fully open for 0.7 ms and requires 1.5 ms to open
and close. The tester carefully synchronizes the trigger timing
to the laser to prevent a pulse from getting partially blocked
and to prevent two partial laser pulses (spaced out by 1 ms)
from getting through. The amount of laser energy delivered
through the shutter was measured using a photodetector as
quite consistent, confirming that individual pulses were cleanly
selected.

Fig. 3: Cross-section of a Virtex-4FX60 device depicting how
a laser pulse is injected into the circuitry.

Fig. 4: Picture of laser testing setup.

Fig. 5: Close-up picture of laser testing setup.

Initially, static testing was used to locate the instruction
and data cache arrays within the PowerPC core area, to aid
in tuning the laser energy, and to determine the number of
bit flips caused by each injected laser pulse. The instruction
and data caches were disabled, loaded with known patterns,
and left in that state indefinitely as laser pulses were injected
by manually triggering the shutter. Using the Xilinx Micro-
processor Debugger (xmd) and debug instructions, the state of
the caches was continuously monitored for bit flips, and any
miscompares logged.

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

user
高亮

user
高亮

The main testing performed was dynamic testing of the
application. At the beginning of a trial, the hardware was
automatically positioned by the NRL’s MATLAB program
such that the laser beam path was pointed at a random location
within the PowerPC core area. The tester reset the application,
allowing it to begin executing. At a random time during the
expected execution time window, the tester allowed a single
laser pulse to be injected. The tester monitored the application
and logged the resulting behavior, along with the laser pulse
position, timing, and measured energy. Then the entire process
was repeated. Each trial lasted 5 seconds plus any additional
recovery period (e.g. to allow for rolling back and restarting
from a checkpoint), corresponding to a few hundred trials per
hour.

V. EXPERIMENTAL RESULTS

In this section we describe four experiments. In the first
experiment, a static laser test was used for calibrating our laser
testing and validating the occurrence of bit upsets. The second
experiment, a dynamic laser test, represents our primary laser
test, where we validate our fault tolerance library against
randomly injected laser pulses. The third experiment was a new
fault emulation campaign, and the fourth combines elements
of our dynamic laser test and fault emulation to validate the
realism of our fault emulation experiments.

A. Static laser test

Fig. 6: Number of upsets observed for increasing laser inten-
sities.

Having identified the instruction and data cache arrays
(see Section IV) we began by injecting single laser pulses
of increasing energy into a single location in the instruction
cache array. In Fig. 6 we provide results from our static test.
At low laser energies (< 700 pJ), no upsets were detected. At
809 pJ, pulses would regularly cause a single bit to flip. At
higher energies such as 1619 pJ, each pulse caused multiple
bit flips (2-5). Note that the gap in Fig. 6 represents laser
energies that were skipped over and does not imply that no
upsets occurred at these energies. A full characterization of
the cache was beyond the scope of this study.

Using this data, we settled on the 1619 pJ laser energy for
our dynamic tests. This provided us with reasonable confidence
that each laser pulse was causing an upset within the PowerPC
core. This is critical because upsets are not directly observable

during dynamic testing (only indirectly through application-
level error behavior), and as we show in the following subsec-
tion, the vast majority of upsets caused no application-level
misbehavior.

B. Dynamic laser test

The dynamic test represents our primary data from the
laser experiment. Each trial is categorized as described in
Section III. To maintain laser focus and alignment, the scan
region of a single campaign was limited to just half of the
PowerPC core area; two campaigns (left and right) were
needed to scan the entire area.

TABLE II: Laser left and right half results

Error Class Left Right % of Total Total
Unrecoverable crash/hang 0 0 0% 0
Recoverable crash/hang 5 48 2.63% 53
Silent data corruption 20 27 2.33% 47
Benign 985 934 95.05% 1919
Total 2019

In Table II we provide the categorical output for each laser
pulse injection in both the left and right side campaigns. Of
particular note is that zero unrecoverable crashes/hangs were
encountered; upon a crash/hang, the application was always
successfully restarted from a checkpoint or through a reset.

In Fig. 7 we show each fault overlaid on an infrared die
photo of the embedded PowerPC core. The non-benign upsets
fall almost entirely within the PowerPC caches; so much so,
that we can clearly identify the caches on the right side of the
core. These are the instruction caches. The data caches, on the
left side, are less obvious, but left side errors still fall almost
exclusively within the data cache arrays. The remainder of the
core is composed of the ALUs, MMUs, an Ethernet controller,
register sets, etc. Notably, very few errors occurred in these
regions. Our application uses neither the MMU nor Ethernet
controller.

C. Fault emulation

TABLE III: Fault emulation full campaign results

Error Class % of Total Total
Unrecoverable crash/hang 0% 0
Recoverable crash/hang 13.27% 449
Silent data corruption 16.58% 561
Benign 71.15% 2374
Total 3384

Our third and fourth experiments center around the use
of a software-based fault emulator to characterize the same
application without the use of the laser. Our overall results,
including injections into both caches and the register sets are
shown in Table III. At a glance, it would appear that our
fault emulator tends to overestimate the number of predicted
application-level errors, suggesting that recoverable errors and
silent data corruption should account for 13.3% and 16.6%
of the errors, respectively. We explore this in more detail in
the following section; however, it is worth noting that this
demonstrates one of the major shortcomings of fault emulation:

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Fig. 7: Composite die photo showing the locations of benign faults (dots) and system-level errors overlaid on the embedded
processor core. Caches are traced with dashed lines. The red squares represent silent data corruption and blue diamonds represent
recoverable errors

the implied assumption that the software-writable memory
regions represent the entirety of the vulnerable portions of the
processor.

Further, close examination of Fig. 7 shows that the cache
arrays actually account for much less of the processor area than
a simple accounting of vulnerable bits would suggest (Table I).
Indeed the cache arrays occupy less than half of the total area
of the PowerPC core, suggesting that applying a derating factor
to the probability of selecting a cache upset would improve the
accuracy of the software-based fault emulator.

D. Correlation between laser testing and fault emulation

Because nearly every non-benign error occurred within one
of the cache arrays, our final experiment focuses on validating
our fault emulator against strictly the data and instruction
caches. In this experiment, we ran two fault emulation cam-
paigns, one against the data cache and another against the
instruction cache. Under these experiments, we avoid the issue
of cache area relative to the PowerPC core by injecting faults in
only the instruction cache or data cache, and comparing those
results against those laser faults that fell within the cache areas.

We ran 3956 and 5719 trials for the dedicated Icache and
Dcache fault emulation campaigns, respectively. In Figs. 8
and 9 we compare our cache-specific fault emulator campaigns
to our laser results. By comparing only the percent of errors,
we find that the fault emulation results compare most favorably
with our laser results in the case of recoverable errors.

However, because we are able to produce far more emu-
lated injections than occurred within the cache arrays during
our laser experiment, we also compare the results by averaging

Fig. 8: Results of a dedicated Icache campaign compared to
laser results. Values are listed as the percent of total faults.

blocks of comparably sized emulated injections to their laser
counterparts. For example, there were 133 laser-based faults
injected into the instruction cache and 92 laser-based faults
injected into the data cache.

Using this analysis we can directly compare the emulated
results with our laser experiment results. All results are within
a 90% confidence interval. For our data cache results, recover-

Administrator
线条

Fig. 9: Results of a dedicated Dcache campaign compared to
laser results. Values are listed as the percent of total faults.

able errors are within 0.106σ (standard deviations), while the
SDCs are within 1.367σ. For our instruction cache campaign,
recoverable errors are within 1.640σ while our SDCs are
within 1.371σ. This helps to confirm our cache injection
model, and demonstrates the viability of fault emulators for
characterizing SEUs.

VI. LESSONS LEARNED

One of the primary goals of this paper is to characterize
a single application through two fault injection methodologies
and show how their combination can be leveraged to greater
effect. Through both laser testing and fault emulation, we
have shown the relative advantages and disadvantages of both
techniques. In this section, we discuss the broad lessons that
we have learned through each technique individually, and most
importantly through the combination of both strategies.

A. Laser lessons

One important lesson learned is the amount of prepara-
tion and development required for system-level laser testing.
Although we re-used a tester board previously designed for
particle beam testing, the new FPGA logic, the embedded test
program, and the capability for selecting individual laser pulses
with a shutter all required significant effort. We initially found
it very difficult to get FPGA devices polished; ultimately a
third party was able to provide prompt service.

An unexpected lesson that we learned early on was the
importance of maintaining laser alignment throughout the
entirety of the experiment. When out of alignment, upsets
were not reliably generated. Thus the alignment needed to
be checked between each campaign, and the size of the scan
region had to be limited such that the device did not move
unintentionally in the z direction. This was the reason that we
split our injection campaigns into two regions.

B. Fault Emulation Lessons

The primary lesson learned from our fault emulation ex-
periments was that future studies of this kind must incorpo-
rate laser testing and/or particle beam testing into their fault
distribution models in order to more accurately model the
different error rates in SRAM cells, registers, etc. While an
error distribution based on Table I represents a starting point,
fully characterizing error rates will require more detailed fault
models than are currently available.

As a practical matter, fault emulation proved valuable as
a precursor to our laser test. The fault distribution was useful
for studying application behavior in the presence of bit errors.
By using fault emulation, we were able to implement a robust
fault tolerance solution prior to engaging the NRL for laser
testing. By doing so, we were able to test our solution without
debugging the fault tolerance library in-place. This resulted in
far more productive testing and many more trials over the three
day testing period.

C. Combining Laser Testing and Fault Emulation

While both fault emulation and laser testing, individually,
proved useful, neither provided a full characterization of
our SpaceCube-based application. Broadly, software-controlled
fault emulation tended to overemphasize cache and register
errors, while laser testing provided only a small sample of
faults.

Characterizing an application as complex as a SpaceCube-
based embedded processor application requires thousands
more trials than can reasonably be collected through laser
testing. However, laser testing provides a realistic fault model
that cannot be replicated through fault emulation without
access to proprietary design details.

The combination of fault emulation and laser testing has
allowed us to more fully explore the failure space of the
system under test. Fault emulation allows us to gather tens of
thousands of trials, over weeks if desired, and at extremely low
cost. Our fault emulation campaigns also correctly predicted
that for the application under test, the instruction cache is far
more sensitive than the data cache in terms of recoverable
errors. The cache injection campaigns proved accurate when
compared to their laser counterparts. This was especially true
in the case of recoverable errors (see Figs. 8 and 9). This was
true despite the somewhat unrealistic fault model imposed by
the fault emulator, the inability to accurately model multi-bit
upsets in emulation, and the fact that each injection occurs
along clean clock boundaries, essentially while the system is
paused (in an interrupt).

Laser testing provides a far more realistic fault mechanism,
injecting faults independent of processor state, causing multi-
bit upsets, and injecting into logic that is unavailable to
a software-based fault emulator. By combining these two
techniques, we were able to leverage the benefits of both
techniques to explore a much greater portion of the failure
space than either is capable of achieving alone.

Finally one insight gained from both laser testing and fault
emulation was the relative effectiveness of error detection on
both the application processor and the emulated radiation-
hardened controller. We found that a surprising majority of

Administrator
高亮

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

detected recoverable errors were caught by the application
processor: 94% in the case of our laser experiment, and 97.5%
in the case of our full campaign fault emulation experiment
(Table III). The emulated radiation-hardened controller was
responsible for detecting 6% in the case of the laser experiment
and 2.5% in the case of the fault emulation campaign.

VII. RELATED WORK

We are not aware of studies that specifically address the
correlation between fault emulation and system-level laser
testing, however many previous studies have related aspects.
Evaluations of software-implemented fault tolerance in embed-
ded applications have been conducted with in situ data [11].
Several studies correlate fault simulation and particle beam
testing [12], or fault emulation and particle beam testing [13].
In some cases, lasers have been used to perform dynamic,
application-level testing, often in the context of cryptographic
applications [10]. Methods of software-based fault injection
have been well documented. Carreira et al. demonstrated a fault
injector using a CPU’s debug features and exceptions [14].
They were able to inject faults into registers and functional
units (but not caches). Velazco et al. used interrupts to inject
faults into registers and on-chip RAM [15]. A method for
injecting faults into both registers and caches on a embedded
PowerPC core was described by Bernardi et al. [16], and we
have developed our own fault injector, used in this paper [8].
The use of checkpoint/restart in embedded systems has been
previously described by Pop et al. [17]. In our earlier work we
focused on fault tolerance [5] and silent data corruption [18]
in a NASA SpaceCube application.

VIII. CONCLUSION

In this paper we have made two contributions: 1) we have
shared the valuable lessons learned in characterizing an embed-
ded application though both laser testing and fault emulation;
and 2) we showed how combining both fault emulation and
laser testing results in a greater understanding of the failure
space than either technique alone provides. A secondary result
of this paper is that we have demonstrated the robustness of
our fault tolerance solution, tolerating thousands of faults and
recovering from every one. Our hope is that this study will
offer insight to researchers who may want to use laser testing
and/or fault emulation for their own work, and who wish to
employ both techniques more effectively.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions
of the following individuals and organizations for their as-
sistance in preparing this manuscript and carrying out the
laser experiments. Scott Stansberry of USC/ISI provided hard-
ware guidance. Jonathan Ahlbin of USC/ISI provided valuable
feedback on this manuscript. Stephen Buchner and Jeffrey
Warner of the U.S. Naval Research Lab provided expertise
in laser testing. Mark Bucciero designed and implemented
much of the framework used in our fault emulation work.
NASA provided a test board and DUT cards. Finally, the
authors greatly acknowledge Tom Flatley, the NASA Goddard
Spaceflight Center, and the NASA Earth Science Technology
Office AIST Program for funding this work through grant
number NNX09AF16G.

REFERENCES

[1] T. Flatley, “Advanced hybrid on-board science data processor-
SpaceCube 2.0,” Earth Science Technology Forum, 2011.

[2] Synova Inc. (2012) Mongoose-V MIPS R3000 Rad-Hard Processor.
[Online]. Available: http://www.synova.com/proc/mg5.html

[3] N. Haddad, R. Brown, T. Cronauer, and H. Phan, “Radiation hardened
COTS-based 32-bit microprocessor,” in Fifth European Conference on
Radiation and Its Effects on Components and Systems, RADECS 99.
IEEE, 1999, pp. 593–597.

[4] D. Rea, D. Bayles, P. Kapcio, S. Doyle, and D. Stanley, “Pow-
erPC RAD750-A Microprocessor for Now and the Future,” in IEEE
Aerospace Conference. IEEE, 2005, pp. 1–5.

[5] M. Bucciero, J. P. Walters, and M. French, “Software fault toler-
ance methodology and testing for the embedded PowerPC,” in IEEE
Aerospace Conference, Mar. 2011.

[6] S. P. Buchner, D. Wilson, K. Kang, D. Gill, J. A. Mazer, W. D. Raburn,
A. B. Campbell, and A. R. Knudson, “Laser Simulation of Single Event
Upsets,” IEEE Transactions on Nuclear Science, vol. 34, no. 6, pp. 1227
–1233, Dec. 1987.

[7] Xilinx, “Virtex-4 PowerPC 405 - Errata for all Virtex-4 FX Devices.”
[8] M. Bucciero, J. P. Walters, R. Moussalli, S. Gao, and M. French, “The

PowerPC 405 Memory Sentinel and Injection System,” in Proceedings
of the 19th Annual International Symposium on Field-Programmable
Custom Computing Machines, ser. FCCM ’11. IEEE Computer Society,
2011, pp. 154–161.

[9] C. Poivey, M. Berg, M. Friendlich, H. Kim, D. Petrick, S. Stansberry,
K. LaBel, C. Seidleck, A. Phan, and T. Irwin, “Single Event Effects
(SEE) response of embedded PowerPCs in a Xilinx Virtex-4 FPGA for
a space application,” in 9th European Conference on Radiation and Its
Effects on Components and Systems, RADECS 2007, Sep. 2007, pp. 1
–5.

[10] V. Pouget, A. Douin, G. Foucard, P. Peronnard, D. Lewis, P. Fouillat,
and R. Velazco, “Dynamic Testing of an SRAM-Based FPGA by Time-
Resolved Laser Fault Injection,” in 14th IEEE International On-Line
Testing Symposium IOLTS ’08, July 2008, pp. 295 –301.

[11] M. N. Lovellette et al., “Strategies for fault-tolerant, space-based com-
puting: Lessons learned from the ARGOS testbed,” in IEEE Aerospace
Conference, 2002.

[12] V. Asenek, C. Underwood, R. Velazco, S. Rezgui, M. Oldfield,
P. Cheynet, and R. Ecoffet, “SEU induced errors observed in micro-
processor systems,” IEEE Transactions on Nuclear Science, vol. 45,
no. 6, pp. 2876 –2883, Dec. 1998.

[13] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical Fault Injection,” in International Conference on Dependable
Systems and Networks, DSN 2008, June 2008, pp. 122 –127.

[14] J. Carreira, H. Madeira, and J. Silva, “Xception: A Technique for the
Experimental Evaluation of Dependability in Modern Computers,” IEEE
Trans. Softw. Eng., vol. 24, no. 2, pp. 125–136, 1998.

[15] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for
microprocessor-based digital architectures through C.E.U. (Code Em-
ulating Upsets) injection,” IEEE Transactions on Nuclear Science,
vol. 47, no. 6, pp. 2405 –2411, Dec. 2000.

[16] P. Bernardi, L. Sterpone, M. Violante, and M. Portela-Garcia, “Hybrid
Fault Detection Technique: A Case Study on Virtex-II Pro’s PowerPC
405,” IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3550
–3557, Dec. 2006.

[17] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design Optimization of
Time- and Cost-Constrained Fault-Tolerant Embedded Systems With
Checkpointing and Replication,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 389 –402, Mar.
2009.

[18] K. Zick, C.-C. Yu, J. P. Walters, and M. French, “Silent Data Corruption
and Embedded Processing With NASA’s SpaceCube,” IEEE Embedded
Systems Letters, vol. 4, no. 2, pp. 33 –36, June 2012.

Administrator
线条

Administrator
线条

